146 7 Sorted Sequences

navigation data structure

7

=

Fig. 7 e as a doubly linked list plus a navigatita staucture
one for each ele dditional “dummy item”. We hsedummy item
to store a speci h is larger than all conceivable keys. We can

he handle to the smallest list itear> k. If

k is larger than all Il return a handle to the dummy item. In
Sect. 3.1.1, we learn nyllnked lists suppontgelaet of operations; most
of them can also be i tly for sorted segenFor example, we
“inherit” constant-time i irst, last, sucg andpred We shall see

constant-amortized-time i ovéh: Handle), insertBeforeand
insertAfter and logarithmi r concatenating anlittapg sorted
sequences. The indexing o finding the position of an element in the
sequence also take logarithmi¢itime. Before we delve inteszription of the navi-
gation data structure, let us loo

Best-first heuristics. Assume that w ome items into a set of bins.
The items arrive one at a time and have to be put into a bin inatedy. Each item

i ity. The goal is to minirhize t
ic solutionis tlmblem is to putitem
into the bin that fits best, i.e., the bin whose re
all bins that have a residual capacity at least
algorithm, we can keep the bins in a sequeq
place an item, we cafj.locatgw(i)), remove t

when its right endpointis reached, it is removed frpridvhen a vertical li
is reached at a positionthat spans the vertical rangey’|, we calls.lo
scanq until we reach the key'.? All horizontal line segments disc
scan define an intersection. The sweeping algorithm can hergkzed to arbitrary
line segments [21], curved objects, and many other geocr@ioblems [46].

2 Thisrange queryoperation is also discussed in Sect. 7.3.

oL fyl_llsl

www.manaraa.com

7.1 Binary Search Trees 147

Database indexes A key problem in databases is to make large collections a&f dat
efficiently searchable. A variant of tije, b)-tree data structure described in Sect. 7.2
is one of theqmostimportant data structures used for dagéabas

Thegmost popular navigation data structure is thagezfrch treesWe shall fre-
quently useithe name of the navigation data structure to tefthe entire sorted
sequence data structut®Ve shall introduce search tree algorithms in three steps. As
a warm-up, Sect. 7 ldntroduces (unbalandedary search treethat supportocate
in O(logn) time wnder certain favorable circumstances. Since bireaych trees are
somewhatdifficultto maintain under insertions and remswvak then switch to a
generalization(a, b)strees that allows search tree nodes of larger degreeo8éet
explains how(a, b)-treesi€an be used to implement all three basic operatidongin
arithmic worst-case time. In Seets. 7.3 and 7.5, we shalfreung search trees with
additional mechanisms_that"support further operationsti®e 7.4 takes a closer
look at the (amortized) eostiof update operations.

7.1 Binary Search Trees

Navigating a search tree isg@ bit like askingyyour way around foreign city. You
ask a question, follow the advice given, ask'again, follogvatvice again, ..., until
you reach your destination.

A binary search treés a tree Whose leaves.store the elements of a sorted sequence
in sorted order from left to right”In ordérto locate a Keywe start at the root of
the tree and follow the unique path t@ the appropriate leafvido we identify the
correct path? To this end, the interiof nodes of a searctstoge keys that guide the
search; we call these kegplitter keys: Every nonleaf node in a binary search tree
with n > 2 leaves has exactly two childrenledt child and aright child. The splitter
key s associated with a node has the property thatall'’kestered in the left subtree
satisfyk < sand all keysk stored in the right subtree satidty> s.

With these definitions in place, it is clear{how to identif@tborrect path when
locatingk. Lets be the splitter key of the current nodekiK s, go left. Otherwise,
go right. Figure 7.2 gives an example. Recallthat the_h@lat tree is the length
of its longest root-leaf path. The height therefore“telithesmaximum number of
search steps neededltzatea leaf.

Exercise 7.1Prove that a binary search tree with> 2 [eaves can be affranged such
that it has heighflogn].

A search tree with heighHlogn] is calledperfectly balancedThe resulting loga-
rithmic search time is a dramatic improvement compared thigtf2 (n) time needed
for scanning a list. The bad news is that it is expensive tp ezfect balancewhen
elements are inserted and removed. To understand thig,dett@s consider the
“naive” insertion routine depicted in Fig. 7.3. We locate #eyk of the new element
e before its success@, inserte into the list, and then introduce a new nodwith

3 There is also a variant of search trees where the elemenssogegl in all nodes of the tree.

www.manaraa.com

148 7 Sorted Sequences

at the top and the poitdetise children at the bot-
ree. The triangles indicatd#rees. Observe that the

@Eu}
¥] [

Fig. 7.3.Naive insertion into a bi iangle inthszan entire subtree

insert 17 insert 13

A=

AR\ =

height of the tree increases every time. Figure 7.4 givesxample
degenerate to a list; we are back to scanning.

An easy solution to this problem is a healthy portion of ojim per
not come to the worst. Indeed, if we insarélements irandomorder,
height of the search tree4$2.99logn [51]. We shall not prove thj ,
a connection to quicksort to make the result plausible. kamgple, consider how
the tree in Fig. 7.2 can be built using naive insertion. We firsert 17; this splits
the set into subset®,3,5,7,11, 13} and{19}. From the elements in the left subset,

www.manaraa.com

7.2 (a,b)-Trees and Red-Black Trees 149

we first insert 7; this splits the left subset inf@,3,5} and {11,13}. In quicksort
terminology, we would say that 17 is chosen as the splitt¢héntop-level call and

Every element of the set is comparid &7. In quicksort,
these compatisons take place when the set is split in théet@b-call. In building

a binary sear se comparisons take place whetetherds of the set are
inserted. So the parison between 17 and 11 takes plées @itthe top-level
call of quicks 1 is inserted into the tree. We hsaeen (Theorem 5.6)
that the exp comparisons in a randomizedspricof n elements

is O(nlogn). By thefabe orrespondence, the expected number of caopain
building a binary, insertions is alsn@gn). Thus any insertion
requires Qlogn i verage. Even more is true; with high prdibabi

each single insertio comparisons, and the expected heightis
2.99logn.
Can we guarant height stays logarithmic in thestwase? Yes and

there are many differ
techniques in Sect. 7. i solutions in deta8dct. 7.2. We shall

Exercise 7.2 Figure 7.2 indic

e shape of a binary tree can begeldy
a transformation calledbtation. i

ply rot the tree in Fig. 7.2 so that the

Exercise 7.3 Explain how to implem implicit bi search tree, i.e., thetreeis
stored in an array using the same ma staii@rray positions as in
the binary heaps discussed in Sect. 6 at are the adesnaad disadvantages
compared with a pointer-based implementatio fsag in an implicit
binary tree with binary searching in a sorted

7.2 (a,b)-Trees and Red-Black Trees

An (a,b)-tree is a search tree where all interior node
an outdegree betweemandb. Here,a andb are con
one for a trivial tree with a single leaf. Otherwise, the rbas between 2
andh. Fora > 2 andb > 2a— 1, the flexibility in node degrees-alloews
ciently maintain the invariant thatll leaves have the same depts we
in a short while. Consider a node with outdegde&Vith such a node, ssociate
an arrayc[1..d] of pointers to children and a sorted arsiy..d — 1] of d
keys. The splitters guide the search. To simplify the notative a
§[0] = —e ands[d] = ». The keys of the elementscontained in the-th child c]i],
1<i<d, lie between the — 1-th splitter (exclusive) and thieth splitter (inclu-
sive), i.e. i — 1] < key(e) < g[i]. Figure 7.5 shows &2,4)-tree storing the sequence
(2,3,5,7,11,13 17,19).

www.manaraa.com

150 7 Sorted Sequences

[—

\Jm

N
HJw
L)
)~
~)n)
e
I
3

hei

Fig. 7.5. sentation a23,5,7,11,13,17,19) by a(2,4)-tree. The tree has height 2

ClassABHandle: Pginter to ABltemgor Item
/l'an ABItem (Ite i i vigation data structuteuply linked list)

ClassABlten{splitter
d = |children : 1..
s = splitters : Array

¢ = children : Array [1%B] of Handle

Function locateLocallyk™ Ke
return min{i € 1..d : k

Function locateRetk : Key, : Hal
i:=locateLocally(k)
if h=1then return c]i]
else returnc|i] —locateRec(k, k 1)

ClassABTreda> 2 :IN, b > 2a—1 : N) of Element
¢={) : Listof Element
r : ABItem(), (¢.head)
height =1 : N

I Locate the smallest Item with kéy > k
Function locatdk : Key) : Handlereturn r.locate

Fig. 7.6. (a,b)-trees. AnABItemis constructed from &
handles to the children. The outdegree is the number©
maximum possible outdegrée There are two functions local i@

locatesk among the splitters anldcateRe¢k, h) assumes th ighth and
descendsh levels down the tree. The constructor fABTreecreate the empty
sequence. The tree has a single leaf, the dummy elemenhanahit has d onegl ocating

a keykin an(a,b)-tree is solved by callinglocateRe¢k, h), wherer is the root a
height of the tree

Lemma 7.1.An (a,b)-tree for n elements has a height at most

n+1J

1+ {Ioga 5

www.manaraa.com

7.2 (a,b)-Trees and Red-Black Trees 151

Proof. The tree has + 1 leaves, where thet1” accounts for the dummy leafeo.
If n=0, the root has degree one and there is a single leaf. So, assum. Leth
be the hei tree. Since the root has degree at leagtrtdvevery other node
has de the number of leaves is at leasi"2'. Son+1 > 2a" 1, or
ince the height is an integer, the bound follows. O

Exercise 7.4
[logy(n+1)].

the height of afa,b)-tree for n elements is at least
is bound and the bound given in Lemma 7.1 dné tig

is only slightly more complicated than searching in a
binary tree.’Instead © ing a single comparison ardeaf node, we have to
find the correct chi

[logb] comparisg

key valueco. This d
is no need to treat t
item can serve asar
the sequence.

Exercise 7.5 Prove that th

To insertan elemeng, we first des
sequence elemest> e. If eand€ hay,

c[i] of its parent nodey, thene will be
corresponding splitter elemesi]. The

incremented and we are finished.
The difficult part is when a node already

IBAnDDERDLNDDD
i aas AT o RS AN

Fig. 7.7. Node splitting: the node of degreeb+ 1 (here 5) is split into a node of degree
[(b+1)/2| and a node of degregb+1)/2]. The degree of the parent increases by one. The
splitter key separating the two “parts” ois moved to the parent

Ol LaCu Zyl_i.lbl

www.manaraa.com

152 7 Sorted Sequences

r—{2[a[g]
k:3’t:l rl s \—Q
2 T [sh2l i 2 2] B [5] [®
AN a8 N
Ao B
= = e = i e = e = r— N

\
120 g 2R
ARRERRRRR

2] 3] 5] 12 [*]

heightt+

/lInsert a new ele
I/ this splits the

i :==locateLocallye)
if h=1then //bas
if key(c[i] — e) =ke

o] —e:=e CINEIRIN
o |t |- |=i—e |
return (L,null)
else e di

(k,t) := (key(e),.inser

else
(k,t) :=cfi] — insertRe¢e,h—1,¢)
if t =null thenreturn (L,null)
endif

s:=(g1],...,sli—1],k,gi],...,s[d—1])
c:={(c[1,...,c[i—1],t,c[i],...,c[d])

Q 0,

if d < bthen //there is still room here
(s,c,d):=(s,c,d+1)
return (L,null)

else // splitthis node
d:=|(b+1)/2]
si=g[b+2—d..b]
c:=cb+2-d.b+1]
return (s'[b+1—dJ,allocate ABIten(s[1..b—d],c/[1f

Fig. 7.8.Insertion into ar(a,b)-tree

u the parent of/ (if it exists). The solution is teplit vin the middle
More precisely, we create a new nodt the left ofv and redu
tod = [(b+1)/2] by moving theb+ 1 —d leftmost child pointerg’[1..b+1—d|
and the corresponding kegsl..b — d]. The old nodes keeps thel rightmost child
pointersc’[b+ 2 —d..b+ 1] and the corresponding splittesso+ 2 —d..b].

www.manaraa.com

7.2 (a,b)-Trees and Red-Black Trees 153

The “leftover” middle keyk = S'[b+ 1 —d] is an upper bound for the keys reach-
able fromt. It and the pointer td are needed in the predecessalf v. The situation

increases by one, i.e., we amathie invariant that all
Smce the height of the tregdg1® (see Lemma 7.1),
we obtain a wor time ofi@n) for insert Pseudocode is shown

We still need to g aves us with a correct, b)-tree. When we
split a node of deg des of degrée- [(b+1)/2] andb+1—d.
Both degrees are ¢ —[(b+1)/2] >aif b>2a—1.

Exercise 7.6.Itis tempting to in y callinglocateto replace the initial
descent of the tree. Why ? Would it work iérgvnode had a
pointer to its parent?

We now turn to the operati
know from our study ofinsert
from the sorted list, and repair possi
Figure 7.9 shows pseudocode. Wh

chis similar to what we already
nt to be removed, remove it
meats on the way back up.
that the degree of its child

or c[i + 1] to repair the invariant. There stratedign F.10. If the
neighbor has degree larger thanve canbalance by transferring some
nodes from the neighbor. If the neighbor has g cannot help since

requiremenb > 2a— 1 ensures that the fused ne
To fuse a nodefi] with its right neighborc]i +
arrays. To obtain the corresponding splitters, we needz [i] of the

allocated,

Exercise 7.7.Suppose a node has been produced by fusing two n
scribed above. Prove that the ordering invariantis maietiian elemerg
through childv.c[i] has key.sfi — 1] < key(e) < v.gi] for 1 <i < v.d.

Balancing two neighbors is equivalent to first fusing therd #ren splitting the
result, as in the operationsert Since fusing two nodes decreases the degree of their

4 \We borrow the notatio€ :: mfrom C++ to define a methoch for classC.

www.manaraa.com

154 7 Sorted Sequences

r—
BN
Il Example:(2,3,5).remové5) A
Procedure ABTreei > 5 =23 .
k
/ 2| 3] 3] |® /Il ,_ g
Rek : Keyh: N, : Listof Elemeng r—r
NN
71
N
/lthere is sth to remove 20 b SE i
1 : C ? i '{ |

I ﬁ B ﬁ
(EER==SRa==ry

/I invariant needs repair

else

S, cli+1 =) o
S N
Clt
v !
(cli+1] — s.cf —(s.¢.d) MARR
disposec]i]; re I
else Ibalanc []
m:=[d’/2] -
(c[i] — s.cli] — ¢, c]i] :
(ci+1 —s cli
(Sm+1.d -1, (]
sli]:=¢/[m|

/ Remove the-th child from an ABltem
Procedure ABltem::removeLocally : N)
cli.d—1]:=c[i+1.d]
gi.d—2:=sli+1.d-1]
d- -

by one.

The execution time ofemoveis also proportional to the hei
hence logarithmic in the size of the sorted sequence. We sui
of (a,b)-trees in the following theorem.

e performance

www.manaraa.com

7.2 (a,b)-Trees and Red-Black Trees 155

11y
v '

C3 C C1 Co C3 C1 C C3

)
< '\'J

=
=
o~ @

— N
HF
C2
Fig. 7.10. Node balal using in (2,4)-trees: nadeas degrea— 1 (here 1). In the
situation on thdeft, it he bling of degrea+ 1 or more (here 3), and wealancethe

degrees. In the sit [e sibling has degrez and wefuse vand its sibling.
Observe how keys @ wo nodes are fused, theedefgthe parent decreases

T

Fig. 7.11. The correspondence b
and 4 as shown on tHeft correspon
in bold

&)
-
-~
-~

5

Theorem 7.2.For any integers a and
port the operations insert, remove, an
O(logn).

>2a—1, (a,b)-trees sup-
disrges of size nin time

Exercise 7.8.Give a more detailed implement
search that needs at md&igh| comparisons.
use of infinite key values and special case trea

lybased on binary
d avoid both explicit

Exercise 7.9.Suppose = 2€ andb = 2a. Show that(1+)
parisons suffice to executel@cate operation in an(a,b
sufficient to combine Exercise 7.4 with Exercise 7.8
additional term+k.

the same key. Elements with identical keys should be trelatsten first-out, i.e.,
removék) should remove the least recently inserted element wit

*Exercise 7.11 (red—black trees).A red-black treds a binary search tree where
the edges are colored either red or black. Blaek depthof a nodev is the number
of black edges on the path from the roowtdr he following invariants have to hold:

Ol LAC U Zyl_ilsl

www.manaraa.com

156 7 Sorted Sequences

(a) All leaves have the same black depth.
(b) Edges into leaves are black.

trees arid, 4)-trees are isomorphic in the following sense:

(2, pped to red-black trees by replacing nodesgoée three

or four by nodes, respectively, connected byesges as shown in

Fig. 7.11. Re ees can be mappe(@td)-trees using the inverse transfor-
mation, i.e., sdnduced by red edges are replacadsingle node. Now

explain ho ~ -trees using a representation as a red—blacletee.

expanding, shrinking, splittimerging, and balancing

ese., sets that allow locat-
st elemdagarithmic time.
f lisyives us access to the
ment vigeittandprevpointers,

search trees implemedbuble-en

ing and removing both the small

For example, in Fig. 7.5, the du

smallest element, 2, and to the lar

respectively.

e Range querieslo retrieve all elements wit
x and then traverse the sorted list until w
y. This takes time Qogn+ output sizg. FO
applied to the search tree in Fig. 7.5 will finc
13, and it stops when it sees the 17.

e Build/rebuild.Exercise 7.12 asks you to give an algos
list or array into an(a,b)-tree in linear time. Eve
elements, this operation is much faster than inserting It
We also obtain a more compact data structure this way.

Exercise 7.12Explain how to construct afe,b)-tree from a sorted li
time. Which(2,4)-tree does your routine construct for the sequefic;
remove the elements 4, 9, and 16.

5 This may be more space-efficient than a direct representatithe keys are large.

Ol LaCu Zyl_i.lbl

www.manaraa.com

7.3 More Operations 157
7.3.1 *Concatenation

Two sorted nces can be concatenated if the largestrglerhthe first se-

i an the smallest element of the seconaseg,. If sequences

-trees, two sequences andg, can be concatenated in time

irst, we remove the dummy item froqy and concatenate

ext, we fuse the root of one tree withappropriate node of
ay that the resulting tree remaiasdsand balanced. More

2ight we descend;.height— g».heightlevels from the

root ofqy b s to the rightmost children. The nod¢hat we reach
is then fused with if,. The new splitter key required is the largest key in
g:. If the degree exceed®d, v is split. From that point, the concatenation

proceeds like aii
ated. The cagéheight< gp.heightis a mir-
ightlevels from the root off, by following
se.... If we explictore the heights of the

ight— gg.height) = O(log(|qs| + |dz])).-

pointers to the leftm
trees, the operation r
Figure 7.12 givesan e

02117 Sinsert 5|17 |
ql B SAc
— £ N A i
2[3[5] #SPt [[7]1d 19
FNEN ST A P AN NN
RODNREITSRADS L : BAan \\Q \\\
3 1|13 (171 2] 3] [5\(7] [11 [[17 19 [©
BT
1:delete® 2:concatenafe
Fig. 7.12.Concatenating2, 4)-trees for(2, 3,17,19)

7.3.2 *Splitting

mic time.
€ sequences

We now show how to split a sorted sequence at a given g
Consider a sequencg= (W,...,X,Y,...,2). Splittingq &
g1 = (W,...,x) andgy = (y,...,z). We implement splitting as
path from the root to leay. We split each node& on this path | ,
andv;. Nodev, gets the children of that are to the left of the path ang
children, that are to the right of the path. Some of these s\otkey get n
Each of the nodes with children can be viewed as the root ¢ad)-tre
nating the left trees and a new dummy sequence element y
x. Concatenatindy) and the right trees produces the sequence of elementsigtarti
fromy. We can do these (@gn) concatenations in total time(@gn) by exploiting
the fact that the left trees have a strictly decreasing hieig the right trees have
a strictly increasing height. Let us look at the trees on #feih more detail. Let

www.manaraa.com

158 7 Sorted Sequences

ri, rz to rg be the roots of the trees on the left andhgt h; to h, be their heights.
Thenh; > hy > ... > hy. We first concatenate_; andry in time O(1+ hy,_1 — hy),
then conca 2 with the result in time QL+ h,_» —hy_1), then concatenate
i in time QL+ hy_>—hx_1), and so on. The total time needed

,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 7.13.Splitting the(2, 4)-tree for(
subtrees shown on tHeft. Subsequently
lines leads to th¢2, 4)-trees shown on th

ler than the worst-
case time. In the best case, we basically pay ; ed element, for
updating the sequence, and for updating the bottommosti . The worst

case is much slowegplit or fuseoperations may propag up the tree.

Exercise 7.15Give a sequence ofoperations oif2, 3)-trees tha 2(nlogn)

split andfuseoperations.

We now show that theamortizedcomplexity is essentially equal toghat of the
best case ib is not at its minimum possible value but is at least [
we shall see variants @fisertandremovethat turn out to have co
complexity in the light of the analysis below.

Theorem 7.3.Consider an(a,b)-tree with b> 2a that is initially empty. For any
sequence of ninsert or remove operations, the total numitsglib or fuse operations
is O(n).

Ol LAC U Zyl_i.lbl

www.manaraa.com

7.4 Amortized Analysis of Update Operations 159

operand

operation cost @ |1-,_-r|
insert o |;|$$
emove o [c] []88

o =leftover
token

[] *ofor split* co for parent
+ofor fuse +o for parent

figure illustrates the add leaf. The twkens charged for an insert are
used as follows. When the i ode of degree throur, the two tokens are
of degreehtertwyd tokens are not needed,
and the token from the node artillustrates the use of the tokens in

balance split, andfuseoperatio

cise 7.16. We use the bank accoun i ced in $&cSplit andfuse

operations are paid for by tokens. These operations codoérea each. We charge
two tokens for eacinsertand one tok and claim that this suffices
to pay for allsplit andfuseoperations.
tion for eachremove so that we can accou
an accounting detour. In order to do the acco
nodes of the tree and show that the nodes ca
table ¢he token invariarnjt

degree 1 2 3
tokens oo o

OO0 0000

Note that we have included the cases of degree 1 ang

Creating an empty sequence makes a list with one dum g
degree one. We charge two tokens for tneateand put them on the r
look next at insertions and removals. These operations addnaove
hence increase or decrease the degree of a node immediately th
Increasing the degree of a node requires up to two additioke!
the degree increases from 3 to 4 or from 4 to 5), and this istxabat we charge for
an insertion. If the degree grows from 2 to 3, we do not needtiaddl tokens and
we are overcharging for the insertion; there is no harm s tBimilarly, reducing the
degree by one may require one additional token on the notiee(ilegree decreases

www.manaraa.com

Ol LAC U Zyl_i.lbl

160 7 Sorted Sequences

from 3 to 2 or from 2 to 1). So, immediately after adding or reing a leaf, the
token invariant is satisfied.

We nee o consider what happens during rebalanciggrév.14 summa-
rizes t i iscussion graphically.
is performed on nodes of (temporary) degree fiderasults

in a node o ree and a node of degree two. It alsocasesehe degree of

the parent. T ns stored on the degree-five nodgpard as follows: one
token pays for th one token is put on the new node of degree two, and two
tokens are 0 ent node. Again, we may not neeatldigdonal tokens
for the pare € ase, we discard them.

2s a node of degree one and a node of degreeothree
four and moves one high-degree node to the obdegree one. If the
high-degree noc e, we have two tokenstdgdiaus and need two

and need one toke
token invariant.

A fuseoperation f ode with a degree-two natla oegree-
three node and decrea: he parent. We hegddkens available.
We use one to pay for the to pay for the dezddahe degree of
the parent. The third token d, and we discar

each for evergplit or fuseoperat
everything else done during arsertor

thatn insertor removeoperations cause
tions.

operations. Instead, the whole tree is rebuilt using
cise 7.12 when the invariant is violated. Show thamng
O(logn) amortized time.

7.5 Augmented Search Trees
We show here thata,b)-trees can support additional operation es if
we augment the data structure with additional informatidowev gmentations

come at a cost. They consume space and require time for kpt@m up to date.
Augmentations may also stand in each other’s way.

www.manaraa.com

7.5 Augmented Search Trees 161

Exercise 7.18 (reduction)Some operations on search trees can be carried out with
the use of the navigation data structure alone and with@utlttubly linked list. Go

key k of the
search, although
tions required to

Emovék). This would take logarithmic time for the
om Sect. 7.4 that the amortizedben offuseopera-
ee is constant. This dé&tmot necessary if each

tline a classABTreelteratorthat al-
that has no parent pointers. Creating

*Exercise 7.20 (avoidin
lows one to represent a positi
an iteratorl is an extensio
support the operatiorremov i erin constant amortized time. Hint: store
the path to the current positio

such that searching can profit
r element’e If the sought
the search time should be

from a “hint” given in the form of th
element has rank and the finger ele
O(log|r —r’|). Hint: one solution links
a doubly linked list.

sequence can then be selected in a time proportional to iga For
simplicity, we shall describe this for binary search trdestt denote thg current
search tree node, which is initialized to the root. The idea descend thg free while
maintaining the invariant that tHeth element is contained in the subtree rooted at

t. We also maintain the numbeof elements that are to tHeft of , 1T =0
Let i’ denote the size of the left subtreetofif i +i’ > k, then set to its left
successor. Otherwisejs set to its right successor ands increased by. When a
leaf is reached, the invariant ensures thatktth element is reached. Figure 7.15
gives an example.

oL fyl_llsl

www.manaraa.com

162 7 Sorted Sequences

select 6th element
bt 0+7>6

subtre
size i 7 -~

0+4<6

i=4

2-6 Fig. 7.15. Selecting the 6th smallest
2|2 5 i=4 element from(2,3,5,7,11,13 17,19)
R represented by a binary search tree.

The thick arrows indicate the search
path

Exercise 7.23G
variants: one that need
variant that needs
of degredl.

ve selection algorithnjdgb)-trees. Develop two
) and stores only the subtree size and another
d storesl — 1 sums of subtree sizes in a node

Exercise 7.24Explain in€'the rank of a sequence element etk k
in logarithmic time.

and constant amortized up
Sects. 7.5.1 and 7.5.2. What

such as @+ except for a few oversimpli
the proceduremsertReandremoveRecan be g
tions. In particular, dalanceoperation will not require calling'the memory manager.
A split operation of a nodemight be slightly fa
the right half. We did not formulate the operal
inserting a new sequence element and splitting
from the point of view of their parent.

For largeb, locateLocallyshould use binary searc
might be better. Furthermore, we might want to have a spe2
for small, fixed values oh andb thatunrolls® all the inner loops.‘Che yto be a
power of two might simplify this task.

Of course, the values afandb are important. Let us start with the ¢
There are two kinds of operation that dominate the exectitioa of loc
their inherent cost, element comparisons may cause braisghedicti

opportunities for S|mpI|f|cat|ons

Ol LAC U Zyl_i.lbl

www.manaraa.com

7.6 Implementation Notes 163

element comparisons can be minimized by choosiag a large power of two and
b = 2a. Since the number of pointer dereferences is proportianthlé height of the
tree (see ExerCise 7.4), large values@ire also good for this measure. Taking this
reasoning to the extreme, we would obtain the best perfocméora > n, i.e., a
singl@ sorted array:Bhis is not astonishing. We have cdnaen on searches, and
static data structures'are best if updates are neglected.

Insertions'@nd deletions have an amortized cost oflooate plus a constant
number of nodeg€organizationsplit, balance or fusg with cost Qb) each. We
obtain a logafithmic amottized cost for update operatidris= O(logn). A more
detailed analysis (See Exercise 7.16) would reveal thag¢@singo beyond 2 makes
split andfuseoperations;ess frequent and thus saves expensive calile tneémory
manager associated with themaHowever, this measure haghtlyshegative effect
on the performance dbcate@nd it\clearly increasespace consumptiotdence b
should remain close teé2

Finally, let us take a closer look atthe role of cache fadltsache of sizéVl can
hold®(M/b) nodes. These areimost likely to be the frequently accessebratose
to the root. To a first approximation, théytop J¢l!/b) levels of the tree are stored
in the cache. Below thislevel, evefy'pointer dereferen@ssociated with a cache
fault, i.e., we will have abouidegbn/©(M)).eache faults in eaclocateoperation.
Since the cache blocks of processancaches,start at adsltbssare a multiple of
the block size, it makes sensediign the starting addresses of search tree nodes with
a cache block, i.e., to make sure that they also start at aresslthat is a multiple of
the block size. Note thdg, b)-trees mightatielbelmore efficient than binary search
for large data sets because we may save a factor @filogache faults.

Very large search trees are stored on disks. Under the Batrees[16], (a,b)-
trees are the workhorse of the indexing data strdctures tabdaes. In that case,
internal nodes have a size of several Kilobytes. Furtheztbe items of the linked
list are also replaced by entire data blocks‘that stofe lEa/eandb’ elements, for
appropriate values af andb’ (see also Exercig@3.20). These leaf blocks will then
also be subject to splitting, balancing, and fusing openati For example, assume
that we have = 219, the internal memory is large enough (a few megabytes) toecac
the root and its children, and the data blocks Stere betwé@md 32 Kbyte of data.
Then two disk accesses are sufficienldcateany elefient'in a sorteéd sequence that
takes 16 Gbyte of storage. Since putting elements into @k dramatically de-
creases the total space needed for the internal nodes@mes mpkssibleto perform
very fast range queries, this measure can also be usefuttmte-efficient internal-
memory implementation. However, note that update operatiayfnow move an
element in memory and thus will invalidate element handieses outsidefthe data
structure. There are many more tricks for implementinggdl-memaoty) a, b)-
trees. We refer the reader to [79] and [141, Chaps. 2 and t4\eerviews. A good
free implementation of B-trees is available in STXXL [48].

From the augmentations discussed in Sect. 7.5 and the irapkation trade-
offs discussed here, it becomes evident thabptimal implementation of sorted se-
guences does not exist but depends on the hardware and tia¢giopenix relevant to
the actual application. We believe thatb)-trees withb = 2¢ = 2a= O(logn), aug-

www.manaraa.com

164 7 Sorted Sequences

mented with parent pointers and a doubly linked list of lsaeee a sorted-sequence
data structure that supports a wide range of operationsgeeftig.

dedhaild ann-elementa, b)-tree using the external sorting
Sect. 5.7 as a subroutine? Comperevith the number of

he tree naively using insertidrs. example, tryM =

232 and elements that have 8-byte keys and 8 bytes of

The STL has four c map multiset andmultimapfor sorted se-
quences. The pre ere may be several elements with the same
key.Maps offer the i n associative array (see also GHapor example,

someMayfk] := x insert
information tox.
sorted sequenceELiuses a variant
of red—black trees with par elementstared in all nodes rather
than only in the leaves. No
concatenation of sorted sequ
LEDA [118] offers a powerf
erations on sorted sequences, inclu
Using an implementation parameter

trees, randomized search trees, wei

chatemation, and splitting.
betyeeb)-trees, red—black
skinlists.

7.6.2 Java

ISortedSetwhich
drresponding imple-

7.7 Historical Notes and Further Findings

There is an entire zoo of sorted sequence data structustakiou
do if you just want to suppoibsert, remove andlocatein logarithmic time. Perfor-
mance differences for the basic operations are often marerdkent on i
tion details than on the fundamental properties of the Upithgrdata s
differences show up in the additional operations.

7 We are making a slight oversimplification here, since in ficacone will use much smaller
block sizes for organizing the tree than for sorting.

Ol LaCu Zyl_i.lbl

www.manaraa.com

7.7 Historical Notes and Further Findings 165

The first sorted-sequence data structure to suppsett remove andlocatein
logarithmic time was AVL trees [4]. AVL trees are binary sgfatrees which main-
tain the invari@ntthat the heights of the subtrees of a ndtkr thy one at the most.
Since thiS IS a strohg balancing conditidocateis probably a little faster than in
mosticompetitors. @Qn the other hand, AVL treesbbhave constant amortized up-
date costs. Another Small disadvantage is that storing élights of subtrees costs
additional space. In cemparison, red—black trees havietsfigigher costs folocate
but they have fastérupdates and the single color bit can biéesqueezed in some-
where. For example, pointers to items will always store eaduresses, so that their
least significant biti€ould be diverted to storing color imh@tion.

(2,3)-trees wepe intreduced in [6]. The generalization(#ob)-trees and the
amortized analysis of Sect. 3.3s5come from [95]. There, it ala® shown that the
total number of §plitting and fusing operations at the naafeany given height de-
creases exponentiallyaiith the height.

Splay trees [183] and some variants of randomized seareh (t& 6] work even
without any additionalinformation besides one key and twocgssor pointers. A
more interesting advantage of thesedata structures isataptabilityto nonuni-
form access frequencies)lf an elemers accessed with probability, these search
trees will be reshaped over time'tg allow an accessitoa time Qlog(1/p)). This
can be shown to be asymptotically optimal for any comparisased data structure.
However, this property leadsite improved running time onlydfuite skewed access
patterns because of the large €onstants.

Weight-balanced trees [150]balancegthe’sizelef the subimstead of the height.
They have the advantage that a nodefof wewglt number of leaves of its subtree)
is only rebalanced afte®(w) insertions or deletions have passed through it [26].

There are so margearch treadata structures faarted sequencekat these two
terms are sometimes used as synonyms. However, there arsoate equally inter-
esting data structures for sorted sequences‘thatait@asethon search trees. Sorted
arrays are a simpkaticdata structure. Sparse tables [97] are,an elegant way to make
sorted arrays dynamic. The idea is to accept/Some emptyto@liake insertion eas-
ier. Reference [19] extended sparse tables toa data steuehich is asymptotically
optimal in an amortized sense. Moreover, this data stra@iga crucial ingredient
for a sorted-sequence data structure [19] thaahe=gblivioug69]gite., it is cache-
efficient on any two levels of a memory hierarchy withoutekaowing,the size of
caches and cache blocks. The other ingredient is gbli\atatc search trees [69];
these are perfectly balanced binary search trees storediimay ‘such thatany search
path will exhibit good locality in any cache. We describeehttvevan'Emde Boas
layout used for this purpose, for the case where therenare2? leaves fOr some
integerk. We store the top'2?® levels of the tree at the beginning of thelarray. After
that, we store the*21 subtrees of depth2?, allocating consecutive blgeks of mem-
ory for them. We recursively allocate the resulting 21 subtregsfof depth*2]
Static cache-oblivious search trees are practical in theesthat they can outperform
binary search in a sorted array.

Skip lists[159] are based on another very simple idea. The startingt poia
sorted linked list’. The tedious task of scannidgduringlocatecan be accelerated

www.manaraa.com

166 7 Sorted Sequences

by producing a shorter ligf that contains only some of the elementdinf corre-
sponding elements @fand?’ are linked, it suffices to scaft and only descend t6
when approaching the searched element. This idea can ateiddsy building shorter
and shostérlists until only a single element remains in ighést-level list. This data
strueture supports allimportant operations efficientlgiirexpected sense. Random-
ness comesih because the decision about which elemerftsdcalihigher-level list

is made randamly. Skig'lists are particularly well suiteddopporting finger search.

Yet another_family of\sorted-sequence data structures samte play when
we no longerfconsider keys as atomic objects. If keys are eusngiven in bi-
nary representationy we can obtain faster data structgiag ideas similar to the
fast integer-sorting algerithms described in Sect. 5.6.x@mple, we can obtain
sorted sequenceg withtbit integer keys that support all operations in timgd@w)
[198, 129]. At least for 32-hit keys)these ideas bring a @merable speedup in prac-
tice [47]. Not astonishingly, string keys are also impott&or example, suppose we
want to adapfa, b)-trees to use variable-length strings as keys. If we wanetpk
a fixed size for node'objects;we have to relax the conditiotherminimal degree
of a node. Two ideas €an be used togvoid storing long strigg kemany nodes.
Common prefixesf keys need togbe stored only once, often in the parent nodes.
Furthermore, it suffices to _store tligstinguishing prefixesf keys in inner nodes,
i.e., just enough charactersito be able to ‘distinguish rdiffekeys in the current
node [83]. Taking these ideas\to the‘extreme resultses [64], a search tree data
structure specifically designedier string keys: tries ezes whose edges are labeled
by characters or strings. The characters@longareot-hfrppresent a key. Using
appropriate data structures for the infier nodes, a trie easebrched in time @)
for a string of sizes.

We shall close with three interesting generalizations ofesbsequences. The
first generalization isnultidimensionaliebjectssuch as intervals or points id-
dimensional space. We refer to textbooks‘on geometrypisrwhie subject [46].
The second generalizationpgrsistenceA datastructure is persistent if it supports
nondestructive updates. For example, after the inserfian element, there may be
two versions of the data structure, the one before the inseid the one after the
insertion — both can be searched [59]. The third genera@izas searching many
sequencef36, 37, 130]. In this setting, there are many sequenceSseadhes need
to locate a key in all of them or a subset of them.

www.manaraa.com

